Target Fabrication and Engineering Services at General Atomics

Mario Manuel Scientist, Physics Liaison Inertial Fusion Technology Division

Presented to LMJ/PETAL User Group Meeting

This work is funded by DOE contract 89233119CNA0000063 and internal research and development funds at GA

June 9, 2023

Outline

- GA Overview
- Target production for stockpile stewardship
- Recent R&D focus

Energy Group

ITER Components & Systems

Systems Engineering

High-Performance Computing

Magnetic Fusion Energy

Inertial Fusion Technology

Precision Materials & Components

Leading edge Diagnostics & Metrology

Stockpile Stewardship Mission

Personnel and Facilities

Energy Group IFT Division 50% • ~300,000 sq. ft. <5yrs ~400 personnel 77 119 43% **YEARS** OF 5-20yrs • Q Cleared: 75 **DEGREES EARNED STAFF** SERVICE La Jolla: 76 18 PhD **LLNL: 36** 14 MS **33 BS/BA SNL: 7** 9001:2015 7% 12 Assoc. LLE: 2 >20yr

Classified work areas • Beryllium & uranium labs • Class100 cleanroom

IFT

ullet

GA is a centralized target fab resource for NNSA Science-Based Stockpile Stewardship

Annually, GA provides 90% of the targets (~14,000 components), used for the nominal 2,600 experiments on NIF, Z, & Omega,

Innovative multi-disciplinary materials research coupled with operations excellence

- Lower costs thru less redundancy
- Critical mass of specialized skill set
- Nexus of technical capability
- Agility to support NIF, Z, & OMEGA
- Academics participants benefit from national lab quality capabilities
- Significant private investment

Outline

- GA Overview
- Target production for stockpile stewardship
- Recent R&D focus

Key Research for Science-Based Stockpile Stewardship

Output & Effects

Engineering Feature

Hydrodynamics

Precision targets are at the center of each experiment that require capabilities from multiple disciplines

Multiple capabilities are often needed to make a single target

GA provides most components for high-yield science at NIF

Ignition Target

At the center of all ICF assemblies is an ablator capsule

Capsule zoology: Many different materials, dopants and densities

Metal alloys, grading and bilayers needed for alternative ignition paths

Structural modification and dopant profile measurement

Look alike? All different!

Bi- layers	Uniform	Graded
W/Cr	Be-B	Cr-Be
W/Mo	Be-Al	W-Be
W/Ti	Be-Ta	W-Ti
W/Zr	Be-W	W-Cr
W/Ta	Cu-B	W-Zr

IFT

Bulk synthesis, combined w. micro- or laser machining, produce new possibilities

Seneral Atomics

Capsule Metrology Vision: From single instrument to data fusion

From five instruments:

- Interference Microscope => Surface defects
- FTIR => Wall thickness
- Xradia => Voids
- AFM => Surface shape
- Nikon => Optical image

The same coordinate system

The "4Pi" Conceptualizing a 4Pi "aircraft carrier" with many instruments: example Sharing common (θ , ϕ) is critical to benchmarking & efficiency

Today: Full capsule data fusion and surface engineering

"4Pi"

Today: Actual 4Pi hardware

Two story optical table

Outline

- GA Overview
- Target production for stockpile stewardship
- Recent R&D focus

Class-leading GACH / GACD foams combine low density with small cell size

- 1:1 C/H ratio
- 1 to 250 mg/cc
- Pore size <1 µm
- Bulk or sphere
 - Nano-doping

Nano-particle dopant choices

1		Aerogels made or in progress (nanoparticle doped CH)												18			
1 H 1.008	2	Supplies on hand. Experiments planned									13	14	15	16	17	2 He 4.0026	
3 Li 6.94	4 Be 9.0122	Nanopowders commercially available									5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180	
11 Na 22.990	12 Mg 24.305	3	Aerogel via GACHX polymer series (non nanoparticle)								13 Al 26.982	14 Si 28,085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948	
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lantl seri	hanide	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie	iide s	89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

CH₂ and CD₂ foams also available

Rep-rated target arrays

Pure-metal-foam printing capabilities are being developed

Copper and tungsten have been demonstrated, but most sputterable metals are possible.

20.00 k

Polystyrene nanowire targets in deuterated form or with embedded nanoparticles have been demonstrated

Polystyrene nanowire targets in deuterated form or with embedded nanoparticles have been demonstrated

2PP fabrication of foam shells shows promise for wetted-foam IFE designs

CHO polymer, BCC lattice

CHO polymer, Stochastic gradient lattice

Deuterated polymer

Low oxygen deuterated polymer (needs more R&D)

2PP techniques are being developed for radiation source development

We are presently collaborating with ELI-Beamlines to develop complex target deployment using a tape-drive system

Replica system for testing and development will be available in 2023

*Condamine, RSI 92 (2021)

Apertured targets significantly reduce target mass for rep-rated HED experiments

GA aperture-tape holds complex and rigid 3D structures, mitigates ablation debris, and can be flexed, rolled, and transported

First demonstration shots using L4n executed in November 2022

We have demonstrated the ability to print 2PP structures on ~30um-thick plastic ribbon for rep-rated HED experiments

Commissioning of the General Atomics Laboratory for Developing Rep-rated Instrumentation and Experiments with Lasers (GALADRIEL)

Our goal is to develop technologies necessary to utilize rep-rated (~0.1-10Hz) capabilities of present and next-generation High-Energy-Density science facilities located in the US and abroad.

GALADRIEL commissioning experiments began in July 2022

- Pulsed gas-jet capable of 10Hz operation
 - ~500 μ s valve-open time, ~40ms hold time
- Remote control of nozzle position and gas pressure
 - Presently using N_2 or He
- Shadowgraphy using 400nm or 800nm probe
 - Data show channel formation and differences in evolution after ~200ps of expansion

Rep-rated technology development on GALADRIEL

ML-algorithm development for compressed-pulse shaping

Rapid analysis of probe beam diagnostics

Target Fabrication at General Atomics

Questions?

Mario Manuel manuelm@fusion.gat.com

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

