

Plasma diagnostic status

Second LMJ/PETAL User Meeting

2023-06-09

G. BOUTOUX, CESTA/DCRE

Overview of LMJ/PETAL diagnostics

- 22 diagnostics in operation
- 1 polar SID
- 5 equatorial SID

Diagnostics families: X-ray spectrometers X-ray imager Optical diagnostics Nuclear diagnostics

 \bigoplus Compatible with inserter

X-ray spectrometers

DMX (Upper view) – MiniDMX (Equatorial SID):

- Time-resolved broad-band channels
 - Up to 10 channels < 1 keV (mirrors + filters)
 - Up to 10 channels in the [1; 20] keV range (filters only)
 - Filters, mirrors, detectors and acquisition are metrologized
- 1 grating X-ray spectromer dedicated to Au M-band [1.5; 4] keV
- 1 time-resolved soft X-ray laser entrance hole imaging with a hCMOS camera (2 frames)
- Dedicated to absolute X-ray spectrum measurements, as well as radiative temperature within hohlraum.

HRXS (Equatorial SID):

- 2 reflective-crystals in the [1; 15] keV range
- Resolving power: ≈ 500
- Images using a framing camera (4 spectra with time exposure ≈ 120 ps at different times)
- Dedicated to atomic physics (NLTE and opacity measurements)

SPECTIX (Equatorial SID):

- 2 transmissive-crystals in the [7; 150] keV range
- Resolving power: ≈ 100
- Integrated-image using IP
- Dedicated to K-shell spectroscopy and PETAL physics
- C. Reverdin et al, SPECTIX, a PETAL+ X-ray spectrometer: design, calibration and preliminary tests, JINST 13, C01005 (2018)

DMX - MiniDMX

 J.L. Bourgade et al, DMX: An absolutely calibrated time-resolved broadband soft x-ray spectrometer designed for MJ class laser-produced plasmas, RSI 72, 1173-1182 (2001) S PXINTELL ିତ Energie DMX 5 0 miniDMX **SXLBt**

SID

<u>cea</u>

Cez

Typical images in a FCI experiment

	Spectral range	Spatial resolution	Field of view	Camera
GXI-2	> keV	150 µm	15 mm	Framing (2D)
GXI-1	> keV	35 µm	3 mm	
ERHXI	> keV	15 µm	1 mm	
SHXI	> keV	50 µm	5 mm	Streak (1D)
SSXI	< keV	30 µm	5 mm	

R. Rosch et al., First set of gated x-ray imaging diagnostics for the Laser MegaJoule, RSI 87, 033706 (2016)

Temps [u. a.]

Dedicated to imaging plasma self-emission or for radiography applications using a LMJ quad as backlighter
User Meeting LMJ/PETAL, 2023-06-09

LEH imaging

• Time-integrated 2D images, dedicated to precision pointing of LMJ laser.

Backscattering diagnostics

Dedicated to energy balance and LPI studies

NB • V. Trauchessec et al., *Time-resolved NBI system on Laser MegaJoule*, RSI 93, 103519 (2022)

Optical system

Analysis table: 4 phototubes (power & energy) + 40 fast photodiodes (time) + 2 ICCD

PDV and fibered VISAR

G. Boutoux et al., Experimental evidence of shock-wave measurements with low velocity (<100 m/s) and fast dynamics (< 10 ns) capabilities using a coupled PDV and triature VISAR diagnostic, RSI 94, 033905 (2023)

Dedicated to study of materials under X-ray irradiation \rightarrow EOS with velocities in the [1: 1000] m/s range

User Meeting LMJ/PETAL, 2023-06-09

Cez

Neutron diagnostics

Charged particles diagnostics

Radiography capabilities using PETAL

- D. Raffestin et al., Enhanced ion acceleration using the high-energy petawatt PETAL laser, MRE 6, 056901 (2021)
 - TNSA proton acceleration as high as <u>51 MeV</u>
 - \rightarrow Proton radiography to probe magnetic fields

C23

Thank you for your attention

Diagnostics reconfiguration are time-consuming: do not forget to follow the proposed experimental platforms for your future proposals.

Guillaume BOUTOUX guillaume.boutoux@cea.fr

SXR

IMP

CEA DAM