

<u>Ces</u>

Laser plasma acceleration of high charge >200 MeV electrons at LMJ-PETAL

F. Albert¹, <u>X. Davoine</u>^{2,3}, <u>W. Cayzac</u>², D. Batani⁴, N. Blanchot⁵, G. Boutoux^{2,5}, T. Caillaud⁵, S. Debesset⁵, R. De Mollerat Du Jeu⁵, R. Diaz⁵, A. Duval², M. Ferri⁵, J. C. Kieffer⁶, I. Lantuejoul², N. Lemos¹, L. Le-Déroff⁵, B. Mahieu², R. Parreault⁵, L. Ribotte², C. Rousseaux², K. Ta Phuoc⁷, B. Vauzour²

¹NIF and Photon Sciences, LLNL, Livermore, California 94550, USA
²CEA, DAM, DIF, 91297 Arpajon, France
³Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
⁴CELIA, Université de Bordeaux–CNRS–CEA, UMR 5107, 33405 Talence, France
⁵CEA, DAM, CESTA, F-33114 Le Barp, France4
⁶INRS-EMT, Université du Québec, Varennes J3X 1S2, Québec, Canada
⁷LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France

albert6@llnl.gov, xavier.davoine@cea.fr, witold.cayzac@cea.fr

08/06/2023

Plan

1. Motivation

Production of energetic electrons on the LMJ-PETAL facility in the SM-LWFA regime Generation of secondary X-ray sources

- **2.** Simulation of the expected electron beam
- **3.** Experimental setup and first experimental results

Motivation

- Development of brilliant X- and γ -ray sources on the LMJ-PETAL facility
- Fundamental study of the self-modulated laser wakefield acceleration (SM-LWFA) regime with PETAL.

Brilliant X-ray Sources: Development of compact plasma based sources

Free Electron Laser

UHI laser-plasma interaction

Brilliant X-ray Sources: Implementation of these sources on LMJ-PETAL

Free Electron Laser Ikm LCLS

UHI laser-plasma interaction

Ultra-fast X- and γ -ray Imaging of dense target

1 MeV radiography simulation

R. Tipton, LLNL 2017

um source size Sub 100 ps duration

X-ray spectroscopy

Ultra-fast warm dense mater probing

B. Mahieu *et al.*, Nat. Comm. **9** 3276 (2018) A. Grolleau et al., PRL 127 275901 (2021)

Laser wakefield acceleration (LWFA): Generation of secondary radiation sources

LWFA		X/ γ -ray sources from a LWFA:
r	$I > 10^{18} \text{ W/cm}^2$ $\tau \sim 30 \text{ fs}$ mm long gas jet $n_e \sim 10^{19} \text{ cm}^{-3}$ $\sim 100 \text{ GeV/m}$ $\sim \text{MeV} - \text{GeV}$	 Betatron sources (~ 1 – 10 keV) Compton (~ 10 keV – 1 MeV) Bremsstrahlung (> 100 keV)

Fundamental studies of SM-LWFA with PW laser

Bubble / Blowout regime

 Many results obtained in different laboratories

Self-Modulated LWFA regime: $c\tau \gg \lambda_p$

- The laser envelop is first modulated at λ_p during the beginning of the propagation
- Then an efficient wakefield is generated and electron acceleration occurs

- Limited number of studies of the SM-LWFA regime on PW laser facilities
- Lower electron energies + broadband spectrum
- but **PW** + ps \Rightarrow $E_{laser} > 100 \text{ J} \Rightarrow$ high charge (~ μ C) !

Fundamental studies of SM-LWFA with ps laser

N. Lemos *et al.*, PPCF 60, 054008 (2018) G. Williams *et al.*, Rev. Sci. Instr. (2018) J.L. Shaw *et al.*, Sci. Rep 11 7498 (2021) P. M. King *et al.*, HEDP (2022)

cea

Simulation

- 2D simulation run before the experiment.
- Used to design the setup.

Laser and plasma target

- PETAL beam (typical shot in 2022)
 - $\tau = 660 \text{ fs}$
 - $7.5 \times 10^{18} \text{ W/cm}^2 \Rightarrow a_0 = 2.33$
 - Focal spot size: 26 μm
 - Full energy: ~ 330 J
 - Energy in the central spot: ~ 40 J

- 2 gas jets
 - 4 mm and 10 mm nozzles
 - He

Laser focusing and self-modulation

Lower plasma density:

- Lower self-focusing
- Slower laser evolution
- But acceleration on a longer distance ⇒ higher electron energy

cea

Electron beam spectrum

- Higher electron energies obtained with the 10 mm nozzle (up to 300 MeV)
- Lower beam charges obtained with the lower plasma densities

cea

Experimental results

Overview of the experimental configuration

Diagnostics				
SESAME1	Magnetic spectrometer: e- spectrum			
	Bremsstrahlung canon: betatron spectrum			
CRACC-IP	IP stack: electron beam spatial profile + charge			
CRACC- ACTIVATION	Activation samples (In, Fe, Zr) inside the CRACC cassette			
TWIST	3w imaging			

d	PETAL request			
Puls	e length	Minimum duration (0,7 ps)		
Ener	gу	Maximum (350-400 J)		
Inten	sity	Maximum (5x10 ¹⁸ -10 ¹⁹ W/cm ²)		
Poin	ting	Transversal: 3 mm from nozzle exit Longitudinal: 0.5 mm after half of the rising edge of the density profile		

Nozzles and gas jet

-bec de canard 3 mm

-bec de canard 2 mm

First-time ever gas jet (He) on LMJ-PETAL, with two different nozzles succesfuly fielded: ٠

Cylindrical nozzle Ø 4mm

« Duck beak » nozzle 10mm x 1 mm

Jet characterization at CEA-CESTA using argon gas and Mach-Zehnder interferometry for electron density measurements ٠

cea

PETAL-jet interaction

« Duck beak » nozzle and gas filling system

- The focal spot distribution varies from shot to shot and strongly impacts the results
- PETAL intensities $\approx 10^{18} 5 \times 10^{18} \text{ W/cm}^2$
- Gas pressures of 55-60 bar were used for obtaining electron densities $\approx 10^{-19}$ cm⁻³
- Expected: electron energies of hundreds MeV, betatron energies of tens keV

Experimental configuration: SESAME1

- 1. IP electrons (MS type) -> main measurement: electron spectrum in principle between 5 and 150 MeV
- 2. IP protons (MS type) -> not useful here
- 3. Canon Bremsstrahlung -> measurement of the X spectrum (betatron if any)

- Dimensions 5 mm x 5 mm (maximum aperture)
- Thickness 29 mm
- Distance from TCC = 6,180 m

1	AI	2,7	0,09	
2	Ti	4,54	0,125	
3	Fe	7,874	0,125	
4	Cu	8,96	0,1	
5	Mo	10,22	0,1	
6	Ag	10,5	0,15	
7	Sn	7,31	0,5	
8	Ta	16,65	0,5	
9	Au	19,3	1,5	
10	Pb	11,35	1	
11	Pb	11,35	2	
12	Pb	11,35	3	
13	Pb	11,35	4	
14	Pb	11,35	6	
15	Pb	11,35	6	
				_

Tableau 1 : Empilement "Haute énergie"

Experimental configuration: CRACC cassette

CRACC provides 3 measurements:

- 1. IP stack on the cassette front (IP1, IP2, IP3, IP4)
- 2. IP stack on the cassette rear (IP5, IP6, IP7, IP8)
- 3. Activation measurements In, Fe, Zr

SESAME electron spectra – example shot 1

SESAME electron spectra – example shot 3

Electron spectra - overview

Bremsstrahlung canon

- Strong signals on all IP, most intense from 8th-9th IP
- Square shape comes from entrance slit 5x5 mm
- Not characteristic of betatron -> simulations ongoing to understand these signals
 - Bremsstrahlung noise arriving on SESAME?
 - Pairs @511 keV generated by interaction between Bremsstrahlung avec high-Z filters within the canon filter stack ?

Beam profiles on CRACC

Ongoing analysis to deduce the beam charge

Conclusions

- Gas jet successfully tested on LMJ-PETAL
- Successful SESAME and CRACC measurements of electron spectra and spatial profiles
- Electronic spectra seem to exceed 200-250 MeV, results to be confirmed
- Spatial measurements obtained with CRACC give access to the total generated electronic charge
- Interesting activation measurements for complementary electron spectrum information, ongoing analysis
- Future work possibilities:
 - Betatron measurements (need of a detector closer to the target chamber center)
 - Higher electron energies (PETAL energy upgrade, SESAME magnet upgrade)
 - Application of electron beam for Bremsstrahlung (γ sources) and pair creation
 - Application of betatron radiation for X-ray radiography, contrast imaging,...

Betatron source principle

Control. Fusion 56 084015 (2014)

Laser self-focusing and energy depletion

Laser energy – 4 mm nozzle

Laser energy – 10 mm nozzle

cea