Experimental mitigation of fast magnetic reconnection in multiple interacting laser-produced plasmas

S. Bolanos<sup>1</sup>, J. Fuchs<sup>1</sup>, C. Courtois<sup>2</sup>, A. Grisolet<sup>2</sup>, <u>R. Smets<sup>3</sup></u>, et al.

<sup>1</sup>LULI, <sup>2</sup>CEA, <sup>3</sup>LPP...

LMJ user meeting : 8-9 june 2023

<ロ > < 部 > < 差 > < 差 > 差 の Q @ 1/21

# Magnetic reconnection in solar arches

3D (revised) standard model [Holman 2016, JGR] :

• Magnetic field lines emerge in cold sun spots



- $\rightarrow$  asymmetric & unparallel ribbons (feet of *B*-lines)
- $\rightarrow$  involve an inhomogeneous shear of the loops
- $\rightarrow$  reconnection propagate along the arcade
- $\Rightarrow$  Can this 3D phenomenon be reduced to a simpler 2D problem ? What is the origin of the dissipation ? How fast it goes ?

## Magnetic reconnection in 2D



- Ohm's law :  $\mathbf{E} = -\mathbf{V} \times \mathbf{B} - \frac{1}{e^n} [\mathbf{j} \times \mathbf{B} - \boldsymbol{\nabla} \cdot \mathbf{p}_e] + \eta \mathbf{j} - \eta' \Delta \mathbf{j} + m_e d_t \mathbf{j}$
- Efficiency of reconnection measured by  $E' = E/B_0 v_A$
- $\rightarrow$  Dissipation  $\equiv$  plasma resistivity : "slow reconnection"  $E^\prime \leq 0.01$
- ightarrow Dissipation  $\equiv$   $e^-$  agyrotropy : "fast reconnection"  $E' \sim 0.1$

## Magnetized plasma loop using a ns-laser

- Plasma produced by a ns-laser on a solid target
- B-field produced by Biermann-battery effect



 $\Rightarrow$  The B-field produced on <u>front face</u> is clock-wise oriented :

$$\partial_t \mathbf{B} = -\frac{1}{en_e} \nabla n_e \times \nabla T_e$$

### Diagnostics

- Proton radiography using PETAL on a solid target
- $\rightarrow$  a proton beam is created with ps-laser on solid target by TNSA
- $\rightarrow$  collected on a stack of Radio-Chromic-Films (resolved in energy)

< □ > < @ > < ≧ > < ≧ > ≧ - りへで 5/21

 $\rightarrow$  the proton dose give insights on the path-integrated B-field

#### • DMX

- $\rightarrow$  integrated spectra (arbitrary units) depending on time
- DP1 & DP4
- $\rightarrow$  provides an image of the focal spot

# Lasers configurations (first shot)



#### Lasers parameters

|                | LMJ            | PETAL           |
|----------------|----------------|-----------------|
| Pulse duration | 5 ns           | 0.7 ps          |
| Energy         | 12 kJ          | 400 J           |
| Solid target   | Au - 5 $\mu$ m | Au - 25 $\mu$ m |
| Wave length    | 351 nm         | 1053 nm         |

- we used 6 quads : C28, C29, C10, both H & B
- laser incidence depends on the quad for experimental reasons
- $\rightarrow$  energy is then modulated for somewhat similar plasma loops
- proton probe incidence of 34°
- hot spots separation : 7.5 mm & 1.5 mm for reconnection
- a total of 7 shots (1 on Ti-foil)
- 3 times for 2-loops and 3-loops reconnection : 2.1, 3.2 & 4.3 ns

#### **Plasmas parameters**

• From fci2 simulation (for a 1-plume plasma) :

| Plasma plume                          | Proton beam                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sim$ 600 nT                         |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim$ 4 $	imes$ 10 $^{27}$ m $^{-3}$ |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim 2 	imes 10^5 \ { m m.s^{-1}}$   | $\sim c$                                                                                                                                                                                                                                                                                                                                                  |
| $\sim$ 100 eV                         | $\sim$ 42 MeV                                                                                                                                                                                                                                                                                                                                             |
| $eta_e=$ 0.5, $eta_i=$ 0.02           |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim$ 300 $ ightarrow$ 900 $\mu$ m   |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim$ 4 $\mu$ m                      |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim 17$ ps                          |                                                                                                                                                                                                                                                                                                                                                           |
| $\sim 2 	imes 10^5 \ { m m.s^{-1}}$   |                                                                                                                                                                                                                                                                                                                                                           |
|                                       | $\begin{array}{l} \mbox{Plasma plume} \\ \sim 600 \ \mbox{nT} \\ \sim 4 \times 10^{27} \ \mbox{m}^{-3} \\ \sim 2 \times 10^5 \ \mbox{m.s}^{-1} \\ \sim 100 \ \mbox{eV} \\ \beta_e = 0.5, \ \beta_i = 0.02 \\ \sim 300 \rightarrow 900 \ \mbox{\mu m} \\ \sim 4 \ \mbox{\mu m} \\ \sim 17 \ \mbox{ps} \\ \sim 2 \times 10^5 \ \mbox{m.s}^{-1} \end{array}$ |

<ロ > < 部 > < 重 > < 重 > < 重 の < で 8/21

- $\rightarrow$  close to the  $\beta \sim 1$  regime
- $\rightarrow$  magnetization parameter  $\sigma \ll 1$

# Reconnection between 2 magnetized plasma loops

• Distance between the 2 focal spots  $\geq$  twice the plume radii



- The current sheet is building up durint the irradiation
- Lundqvist number  $S \sim 10^3$  (with Spitzer-Harm resistivity)
- $\rightarrow$  aspect ratio of the current sheet <50
- $\rightarrow$  we then are not in the plasmoid regime
- Curvature of the B-field in favour of single X-type reconnection
- Numerical approach with a 2D Hybrid-PIC code

# Reconnection between 3 magnetized plasma loops

• Why did we also used 3-plumes reconnection ?



- The plasma outflow (ejecta) is "trapped" in closed structures
- Creation of a closed magnetic structure
- $\rightarrow$  being quite small, should be "quite planar"

# Proton radiographies from LMJ 2019 experiment



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�(ひ - 11/21

## Path-integrated for B-field (3-plumes)

- we used the problem solver [Bott et al. 2017, JPP]
- we considered 30 MeV protons for this analysis
- ightarrow the highest  $p^+$  energy lowers the diffusion effect



 $\rightarrow$  clearly pictures the 2-loop structure during reconnection

#### B-field reconstruction using problem solver

• Maxwell-Faraday : relation between magnetic flux  $\partial_t \phi$  and E



• weaker B-field for 2-plumes & 3-plumes : reconnection operates !  $\rightarrow \partial_t \phi = \partial_t \iint B_y \, dx dz = 2.5 \pm 0.6 \, \text{T.mm}^2.\text{ns}^{-1}$   $\rightarrow$  frow Faraday law,  $\partial_t \phi = \int E dz \sim \lambda E$  $\rightarrow \int B_y \, dz = 13 \, \text{T.mm}$  and  $V_0 \sim v_A = 400 \pm 130 \times 10^3 \, \text{m.s}^{-1}$ 

- reconnection rate  $E' = 0.48^{+0.40}_{-0.20}$  (2-plumes case)
- $\rightarrow$  <u>Fast reconnection</u> (even very fast...)

# Hybrid-PIC simulation using heckle

• Creation of a "Hall" quadrupolar B-field



- $\rightarrow$  the "mouth" opens just before the onset
- $\rightarrow$  then closes during reconnection
- $\rightarrow$  and disappears when there is no more B-field

#### Numerical reconnection rate with heckle

• We then "measured" E' at the saddle point &  $U_{\gamma}$ 



- The reconnection rate  $(E' \sim 0.2)$  is clearly fast
- $\rightarrow$  smaller reconnection rate with 2 plumes
- $\rightarrow$  the outflow velocity is clearly inhibited by the closed structure

### Importance of the Hall effect for fast reconnection



- (Hall)  $E_{XY}$  electric field associated to  $J_Z$  and  $B_{XY}$
- $J_Z$  grows at the tip of each loops when colliding  $\rightarrow$  quadrupolar  $B_Z$  grows because  $E_{XY}$  is no more curl-free
- $J_{XY}$  associated to this out-of-plane magnetic field  $\rightarrow$  carried by electrons because protons are demagnetized

## Concluding remarks

- competiting effects of Biermann-battery and reconnection
- $\rightarrow$  B-field created by Biermann-battery : source term
- $\rightarrow$  B-field is then reconnected : loss term
- Magnetic reconnection operates in 2-plumes & 3-plumes cases  $\rightarrow v_A$  and  $B_0$  values are coherent with fci2 results
- In the 2-plumes case, E' > 0.48
- $\rightarrow$  first measure (of a lower value) of a reconnection rate
- "Fast reconnection" is slowed down in the 3-plumes case
- ightarrow magnetic reconnection is hampered as the outflow is trapped
- $\rightarrow$  magnetic reconnection is hampered as the Hall B-field is lowered

## DP1 images



< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ のへで 18/21

#### DMX spectra



 $\rightarrow$  unfortunately, no clear insights from these spectra...

# B-field pictured by proton-radiography



- Strong  $B \Rightarrow$  before Reconnection : "open mouth"
- Moderate  $B \Rightarrow$  during reconnection : "closed mouth"
- no  $B \Rightarrow$  after reconnection : nothing !

# Synthetic RCF for 10 MeV proton beam



- $\rightarrow$  a "mouth" open when B field is compressed
- $\rightarrow$  but closes when reconnection operates (and decrease B)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ の へ ? 21/21