

PETAWATT AQUITAINE LASER

PETAL laser performance

N. BLANCHOT and PETAL team CEA-CESTA

08/06/2023

PETAL: a PW beam coupled with LMJ

sub-apertures compression scheme with beam phasing

* limited at the beginning to < 1 kJ due to the damage threshold of the transport mirrors

cea

* A. LE CAMUS al., Impact of compression grating phase modulations on beam over-intensities and downstream optics on PETAL facility, Optics Express 30, 7425 (2022)

08/06/2023

33.2°: 10 Q – Internal 49°: 10 Q - External 59.5°: 2 Q - Diags

90° : PETAL

120.5°: 2 Q - Diags 131°: 10 Q - Exte

Current PETAL Performance

ightarrow 2015: 1.15 PW @ 700 fs @ 850 J*

ightarrow 2015: shots at 1 kJ @ 1 ps in the compressor

ightarrow 2016: optimization of the pulse compression ightarrow 570 fs @ 219 J

 \rightarrow 2017/2018: commissioning of the facility on target and 1st campaigns \rightarrow 7.9 10¹⁸ W/cm² (409 J @ 660 fs)

 \rightarrow 2019 / 2023: 6 international campaigns (400 J)

- \rightarrow Improvement of the focal spot: 0.9 10¹⁹ W/cm² (358 J @ 690 fs)
- \rightarrow Shot on a 25 µm wire with an elliptic focal spot of 10¹⁸ W/cm²
- \rightarrow Large focal spot
- \rightarrow Different pulse durations (3 ps, 5 ps, 7 ps, 10 ps, 18 ps)

* N. BLANCHOT *et al.*, "1.15 PW–850 J compressed beam demonstration using the PETAL facility", *opt.* Express, **25**, 16957 (2017). ** H. COIC *et al.*, "Modeling of the petawatt PETAL laser chain using Miró code", *Applied Optics*, **56**, No. 34, 9491 (2017).

PETAL Front-End performance

100 fs → 9ns @ 16 nm

Experiments required few ps pulses on the targets

Implementation of an optical fiber (OF) to increase the stretching factor

For **10 ps** : **84 m** OF (Dispersion: -40 ps/km/nm)

→ Pulse duration has to be defined in advance to purchase the OF

 \rightarrow 100' ps pulses required to adjust the PAM OPA stages

Output beam from PAM:

4.5 ns @ 8 nm - 40 mJ

08/06/2023

Sub-aperture compression scheme

Compression Performance

COMPRESSION

01

Annual optimization with 2nd stage of compression and the stretcher : compression and sub-apertures synchronization

Autocorrelator = duration

2D - Spectral Interferometer = delay

ightarrow Duration between 650 fs and 1 ps

Compression duration instabilities due to front-end:
 spectral amplitude modulation (OPA pump modulation)
 → new pump oscillator (summer 2022)
 front-end room air conditioning fluctuation

→ New short range contrast measurements (April 2023) : analysis in progress

Focal spot performance

FOCAL SPOT AND BEAM PHASING

Daily alignment with the segmented mirror

9 th February 2023	10 th February 2023
1	
-	elated to a poor
-	point in a bay room,
the beam bein	g however tubed !

Amplifier atmosphere (high hygrometry level) : few hours to be stable

08/06/2023

<u>cea</u>

Specific Focal Spot (1/2)

SPECIFIC FOCAL SPOT

Adjustment of the segmented mirror and the 2nd compression stage

Adjustments of the 4 independent compressors to obtain a focal spot of ~ 100 x 25 μ m² on the wire :

- Each sub-aperture has 700 fs pulse duration
- They are delayed by 750 fs to limit beam phasing

2D - Spectral Interferometer measurement

100 x 25 µm² focal Spot for shot on vertical wire

Specific Focal Spot (2/2)

03

SPECIFIC FOCAL SPOT

Adjustment of the segmented mirror and the 2nd compression stage

Miro simulations :

Aberrant beam, 700 fs Perfect beam phasing

- Vertical tilt of 2 sub-apertures of 6.2 µrad
- Focal spot size: 20 x 60 μm²
- Pulse stretched at 20 ps
- Intensity divided by a factor 57

Large focal spot for BRAMBRINK campaign

Experimental intensities:

- **SMETS** : 700 fs
 - $I_{max} = 10^{19} \text{ W/m}^2$

BRAMBRINK : 18 ps, tilt 6.2 μrad I_{max} = 2 10¹⁷ W/m²

\rightarrow Large focal spot but with modulations

08/06/2023

(I_{max}) Aberrant beam, 20 ps

 $I_{max} = 1.69 \ 10^{19} \ W/m^2$

Tilt = 6.2 µrad on 2 sup-apertures

I_{max} = 2.95 10¹⁷ W/cm²

Fine alignement on target with T ω IST 1 ω

For fine alignments, 2 steps are used:

- Alignment with the camera of the LMJ « Reference Commune »: 50 µm
- Fine alignment on the wire with TwIST after the target positioning

T ω IST (Two/three ω Imaging System)*: focal spot imaging = imaging of the interaction region at 2nd (2 ω) or 3rd

 (3ω) harmonics of the laser frequency

* D. RAFFESTIN et al., "Application of harmonics imaging to focal spot measurements of the "PETAL" laser", J. Appl. Phys. 126, 245902 (2019)

Pointing on target

The performance obtained are:

- Around than 20 μm in X and 30 μm in Y
- Amplifier Section vibrations: +/- 2.5 μ rad \rightarrow +/- 20 μ m
- (40 μm, 130 μm) on Shot #5:

Air conditioning in the 1st stage compressor room stopped after the alignment on target and 1h before the shot (increase of temperature)

- (20 µm, 40 µm) on Shot #9:

Air conditioning in the 1st stage compressor room not well controlled during all the day (decrease of temperature)

 \rightarrow 2 different apodizations in the

Energy performances (1/2)

→ Energy limited to 400 J to avoid damage growth* on old coating design of final optics under vacuum

* M. SOZET et al., "Sub-picosecond laser damage growth on high reflective coatings for high power applications", opt. Express, 21, 25768 (2017).

cea

08/06/2023

Increase of Energy performances in 2024 (2/2)

Synchronization PETAL/LMJ on target

Measurements at the LMJ target chamber center with (PETAL & LMJ) PAM shots

Measurement on high energy shot: photodiode with reference on TDC (Compression Diagnostic Table)

 \rightarrow Shot to shot synchronization well controlled and measured: +/- 50 ps obtained \rightarrow High resolution (15 ps) installed but not fully implemented on TDC (new photodiode required)

08/06/2023

٠

Conclusion

- Up to 2023 experimental campaigns
 - Vibrations and instabilities of the focal spot
 - \rightarrow Vibrations corrected: due to vacuum pump vibration
 - \rightarrow Instabilities corrected but after the campaign: due to air conditioning \rightarrow action plan under progress
- 2023 maintenance of equipment's
 - New oscillator to replace the Mira oscillator (20 years old !)
 - New final optics : parabola and pointing mirror with recent coating design (not the last one, see next talk)
- 2024: first step of PETAL energy increase
 - 650 J @ 650 fs = 1 PW on target in April
 - \rightarrow Go/NoGo after each shot with observation of the components and particularly the grating under vacuum
 - ightarrow Evolution of the performances in the future will be presented by E. Hugonnot in the next talk with the

PETAL-UPgrade project

<u>Ces</u>

Thanks for your attention

and

Thanks to all contributors to this work ©©

F. Audo, S. Cavaro, C. Chappuis, T. Fonseca, F. Scol, W. Vaillant, E. Lavastre, M. Pfiffer, D. Taroux, N. Santacreu, P. Bagur, H. Coïc, X. Ribeyre, J. Duthu, F. Macias, T. Morgaint, J. Dos-Santos, J. Beyronneau, F. Alquier, D. Valla,
F. Picart, S. Noailles, J. Neauport, C. Rouyer, G. Boutoux, M. Thibault and E. Hugonnot And

All the LMJ-PETAL facility exploitation Team

Nathalie BLANCHOT

Nathalie.blanchot@cea.fr 05 57 04 40 00

