Experimental determination of SRS mechanisms in large, directly driven, ICF plasmas on the LMJ

Unique diagnostics

Fusion-scale plasmas

LMJ focal spots: Inners and Outers: 0.76mm×0.4mm (FWHM)

NIF focal spots: Inners: 1.7mm×1.2mm (FWHM) Outers: 1.2mm×0.7mm

Jason F. Myatt

Department of Electrical and Computer Engineering University of Alberta, Edmonton, AB, T6G 2V4, Canada 2nd LMJ-PETAL User's Meeting Hilton Garden Inn Bordeaux Centre June 8-9, 2023

Summary

The goal is to employ the unique diagnostics available on LMJ to conclusively identify *and quantify* the active SRS mechanisms in direct drive plasmas

- Quantify total amount of SRS scattered and its correlation with hard x rays (hot electrons)
- Identify and quantify the individual contributions from back-scatter, side-scatter, and multi-beam processes
- Provide a data set that can be used for the development and testing of reduced (in-line) models of SRS*
- Advance theoretical understanding; e.g., identify regions of absolute and convective instability
- Compare with NIF planar LPI platform**

* ELPSE: Eikonal Laser Plasma Simulation Environment
** M. Rosenberg *et al.*, Phys. Plasmas 27, 042705 (2020)
A.A. Solodov *et al.*, *ibid* 052706

Co-PIs/collaborators:

Wojciech Rozmus

University of Alberta

S. Hueller

Ecole Polytechnique

P.E. Masson-Laborde, A. Debayle, C. Ruyer, P. Loiseau

CEA

S. Depierreux, and V. Tassin

CEA

S. Bebesset, L. Le Deroff

CEA

Mike Rosenberg, Andrey Solodov

Laboratory for Laser Energetics, United States

Quantify

We will quantify the total amount of SRS light and its correlation with hard x-ray signatures

Previous planar NIF experiments showed that the SRS occurred at a level that is problematic for directly-driven laser fusion**

Observation at 50° can only be sidescatter. **Tangential SRS** sidescatter theory* predicts scattered light wavelength independent of beam angle, as observed.

F25568

*P. Michel *et al.*, Phys. Rev. E **99**, 033203 (2019). ** M. Rosenberg et al., Phys. Plasmas 27, 042705 (2020) A.A. Solodov et al., ibid 052706

Quantify

On the NIF planar LPI platform, scattered light information was limited to the FABS locations

Angular dependence of SRS scattered light investigated by rotating the target (23° and 50° FABS)

*P. Michel *et al.*, Phys. Rev. E **99**, 033203 (2019).
** M. Rosenberg *et al.*, Phys. Plasmas 27, 042705 (2020) A.A. Solodov *et al.*, *ibid* 052706 ٠

Interaction conditions will be similar to those obtained on the NIF planar LPI platform

Rad-hydro calculations are pending

Energy/power limitation to manage damages on the optics in 2024: 13.5 kJ per quad/4.5 TW per quad (270 kJ total) LMJ focal spots: Inners and Outers: 0.76mm×0.4mm (FWHM)

×0.4mm (FWHM)

3 mm 1.2 mm LMJ inners and outers NIF focal spots:

Inners: 1.7mm×1.2mm (FWHM) Outers: 1.2mm×0.7mm

LMJ experiment

The LMJ angular coverage of scattered light is superb - by virtue of the NBI and associated diagnostics

The NBI covers a very broad range of scattering angles around Q28H and Q29H; FABS installed in Q23H (33° quad)

LMJ experiment

The LMJ angular coverage of scattered light is superb - by virtue of the NBI and associated diagnostics

Time resolved signals are available at 40 locations on the NBI

Quantify side scatter SRS

Stimulated Raman side-scattering processes can be discriminated on the basis of their angular and spectral properties

- SRS side scattering occurs at the turning point of the scattered light wave
- For side scatter in a planar 1-D plasma, the scattering angle corresponds to density of origin (turning point)
- Simple calculations indicate that single beam side scatter will be observable on the NBI and the Q28H and Q29H FABS
- Detailed ray tracing will be performed

*P. Michel et al., Phys. Rev. E 99, 033203 (2019).

Side scatter SRS light was observed on the NIF planar LPI platform

The contribution of SRSS to the total scattering and hot electron production is not currently known**

Observation at 50° can only be sidescatter. **Tangential SRS** sidescatter theory* predicts scattered light wavelength independent of beam angle, as observed.

*P. Michel *et al.*, Phys. Rev. E **99**, 033203 (2019). ** M. Rosenberg et al., Phys. Plasmas 27, 042705 (2020) A.A. Solodov et al., ibid 052706

Diagnostic signatures

The LMJ Calculations show that single quad side scatter will be observable on the NBI

- Spectral information can be obtained on Q28H (Q11H side scatter shown)
- For side scatter the scattering angle corresponds to density of origin

Diagnostic signatures

Truncating the pulse of a single quad will allow its contribution to be quantified

- Gain predictions for SRS side scatter as a function of angle for a single beam (green)
- Excellent angular coverage for single beam SRSS scattering can be obtained by delaying different pairs of quads in turn (Q11H, Q17H, Q28H, and Q24H)
 - Good interception of NBI and FABS

Diagnostic signatures

Multi-beam scattering processes can also be discriminated by their angular properties

- For example, collective full 33° cone SRS with a common EPW will scatter light from Q11H onto the NBI
- The above can also be side scatter; this will be identifiable because it will have a polar angle of 55°; truncated quad also

Model development

The data set will be analysed with *ELPSE* and used to aid in the further development and testing of inline models for rad-hydro codes

- The plasma profiles will be computed by the DEA/DIF Co-PIs using the TROLL code* and by the LLE Co-PIs using the DRACO code
- Scattered light predictions will be made using the Eikonal Laser-Plasma Simulation Environment (ELPSE**)

*E. Lefebre *et al*, Nucl. Fusion **59**, 032010 (2019) **S. Hironaka *et al.*, Phys. Plasmas **30**, 022708 (2023).

There is the potential to observe regions of both absolute and convective SRSS

SRS side-scatter can be an absolute instability*

M. J. Rosenberg et al., PRL **120**, 055001 (2018)

*B.B. Afeyan & E.A. Williams, Phys. Fluids <u>28</u>, 3397 (1985) *P. Michel *et al.*, Phys. Rev. E **99**, 033203 (2019).

Advance Understanding

A tilted-target shot will allow the transition from absolute to convective SRS to be observed

 Tilting the target will allow observation of scattering process occurring in the near quarter critical region

*Chengzhuo Xiao "Unified theory of absolute side scattering in inhomogeneous plasma", NO07.00015 (APS-DPP).

Advance Understanding

The *ELPSE* code will also be used to make predictions for the transition from absolute to convective instability

- The figure below shows theory simulations of light generated by absolute SRSS in OMEGA EP experiments*
- Similar work is being done for predicted LMJ hydrodynamics

*M.Rosenberg *et al.*, Phys. Plasmas **30**, 042710 (2023); S. Hironaka *et al.*, Phys. Plasmas **30**, 022708 (2023).

Advance Understanding

A shot with a "ramped" laser pulse can be used to compute convective gains and identify absolute instability

- The amount of scattered light of a given frequency can be determined as a function of the incident intensity
- An exponential dependence indicates linear convective amplifier whose gain can be determined
- Linear (weaker) dependence indicates nonlinear saturation which is associated with absolute instability
- NIF only identified absolute SRS backscatter - but suggestive of absolute side scatter...

* M. Rosenberg *et al.*, Phys. Plasmas 27, 042705 (2020) A.A. Solodov *et al.*, *ibid* 052706

Compare with NIF planar

A comparison will be made between the new results obtained on LMJ with those previously obtained on NIF*

- Limited data set for "ignition scale conditions" (reproducibility)
- LMJ polarization is different
- There is potential for an indirect measurement of hydrodynamics and transport as we will have a timedependent measurement of scattering over wide angles (refraction)

* M. Rosenberg *et al.*, Phys. Plasmas 27, 042705 (2020) A.A. Solodov *et al.*, *ibid* 052706

Summary/Conclusions

The goal is to employ the unique diagnostics available on LMJ to conclusively identify the active SRS mechanisms in direct drive plasmas

- Quantify total amount of SRS scattered and its correlation with hard x rays (hot electrons)
- Identify and quantify the individual contributions from backscatter, side-scatter, and multi-beam processes
- Provide a data set that can be used for the development and testing of reduced (inline) models of SRS*
- Advance theoretical understanding; identify regions of absolute and convective instability
- Compare with NIF planar LPI platform**
- Serendipity (transport)?

* ELPSE: Eikonal Laser Plasma Simulation Environment
** M. Rosenberg *et al.*, Phys. Plasmas 27, 042705 (2020)
A.A. Solodov *et al.*, *ibid* 052706