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In the indirect drive approach to ICF, lasers irradiate a high-Z 
wall creating a radiation bath to implode a capsule of DT fuel
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>~300 eV x-rays
Needed for 
sufficient 
implosion 
velocity
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In the indirect drive approach to ICF, lasers irradiate a high-Z 
wall creating a radiation bath to implode a capsule of DT fuel
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>~300 eV x-rays
Needed for 
sufficient 
implosion 
velocity

LPI = Laser Plasma Instabilities

Laser light excites plasma waves 
that can scatter light back out 
the hohlraum (”backscatter”)

Laser

SBSHowever…
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A big challenge is to produce a symmetric high convergence
implosion
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~ 30x

Distortions from sphericity 
reduce efficiency and may 

quench ignition 

>~300 eV x-rays
Needed for 
sufficient 
implosion 
velocity

~ 30x

Desired In practice…

or
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Inner beams absorbed 
by ablated wall

Late-time symmetry is hindered by the material ablated from 
the hohlraum wall

Early NIF experiments 
used high hohlraum gas 
fill to control symmetry

➢ High level of LPI were
produced reducing 
the energy coupled to 
the capsule

Currently, NIF 
experiments used 
low hohlraum gas-fill 

➢ Reduces LPI
but

➢ Challenges 
symmetry control
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➢ Inner beams absorbed by ablated 
wall

Cross-beam energy transfer (CBET*) is used to restore 
symmetry

(k0, w0)

(k1, w1)

Dk

But may not be sufficient 

as targets scale up

CBET: A process whereby a beam exchanges energy with another beam of similar wavelength by exciting an ion acoustic wave 
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This technique was successful in producing an implosion with 
yields larger than the energy delivered to the fuel

Ecap ~ 232 kJ

𝑪𝑪𝑹 = Τ𝑹𝑯𝒐𝒉𝒍 𝒓𝒄𝒂𝒑

Current State of Art 

0.3 mg/cc 
He

CCR ~2.85

Shot N221205* achieved
Y ≥ 3 MJ

using a low-gas fill 
hohlraum shown to 

mitigate LPI instabilities
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However, yields in excess of 10 MJ in ICF at fixed laser energy 
requires increasing the capsule absorbed energy

Ecap ~ 232 kJ

𝑪𝑪𝑹 = Τ𝑹𝑯𝒐𝒉𝒍 𝒓𝒄𝒂𝒑

Current State of Art 

Ecap > 300 kJ

Y ~ 10 MJ requirement

0.3 mg/cc 
He

CCR ~2.85 CCR ~2.5

At fixed laser energy

Larger capsules are needed

Shot N221205* achieved
Y ≥ 3 MJ

using a low-gas fill 
hohlraum shown to 

mitigate LPI instabilities

0.3 mg/cc 
He
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Selective foam-filling combines the advantages of a high-fill 
(bubble tamping) and a low-gas fill (low LPI) hohlraums
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Goal: to pursue an alternate hohlraum path to a lower CCR* hohlraum design

➢ Foam rings located at outer beam spots 
tamp wall expansion and maximize 
inner beam power to midplane

➢ Partially filled hohlraum eliminates 
potential imprinting of the foam 
structure onto the capsule surface, 
reducing RT instability seeds (Casey 
N160724)

➢ Foam porosity allows for hohlraum gas 
permeation potentially reducing SBS 

Engineered foam fills can potentially suppress LPI in ways not 
possible with gas fills using selected dopants at cryo temperatures *𝑪𝑪𝑹 = Τ𝑹𝑯𝒐𝒉𝒍 𝒓𝒄𝒂𝒑
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Pre-shot simulations of a CH ignition design using foams show 
improved inner beam transport, avoiding the need for CBET

Bubble radial position (cm)

Gas-only

Foam
~1 ns

Delay in Au bubble motion significantly changes the 
shape of the hot spot self-emission, restoring 

control of symmetry via peak cone-fraction tuning

Gas-only Foam

𝑍 𝑍

𝑅𝑅High compression (~30x) CH design
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Experiments at the LMJ* (CEA) facility provided a first look at 
the viability of the selective foam hohlraum concept

NIF   (cryo) LMJ    (room temperature)

CH  Ablator

He @
0.45 mg/cc

5.75 mm

1
0

.1
3

  m
m

3.64 mm LEH

SiO2 Ablator

C5H12 @
0.55 mg/cc

3.2  mm

6
.7

7
  m

m

2.4 mm LEH

𝑪𝟓𝑯𝟏𝟐 gas-fill density was chosen to maintain 
same  < 𝒏𝒆 > for both hohlraums.

C5H12 @
~0.3 mg/cc

3.2  mm

6
.7

7
  m

m

2.4 mm LEH

SiO2 Ablator

Foam 1 mg/cc

CCR: 2.65
CCR: 2.9

Gas-only Foam

*C. Lion, Journal of Physics: Conference Series 244, 012003 (2010);    
JL. Miquel et al, Review of Laser Engineering 42, 131-6 (2014)
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Fielding requirements and ease of transport necessitated a 
redesign of the original capsule to avoid the use of a fill tube

tent

CH

Si-doped 
layers DT ice

DT 
gas

Scale 0.9 target

62 µm

Laser Power (TW)

Time (ns)

tent

SiO2

20 𝝁m CH 
overcoat

35 atm 
D2 gas 
+ Ar

LMJ Target

Cryo-layered target RT non-layered target

Peak power chosen to reduce laser 
intensity (for LPI control) since LMJ phase 

plates are ~ 80% or ~55% smaller area than 
the NIF inners or outers respectively

152 kJ

1.1MJ

Capsule is a ~0.6x scale to 
simultaneously test smaller 

CCR (2.9 → 2.6) 



13

The experiments assessed several key properties of hohlraum 
dynamics using the current LMJ capabilities

➢The laser power used the optimal 
LMJ configuration

--- inner
--- outer
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CONE FRACTION

Optimal

Total Energy:   152 kJ
Total Power:   ~69 TW

➢Two primary objectives

➢Ascertain LPI instabilities in the presence of the foam disks

➢Assess the reduction in bubble motion to improve symmetry control



LMJ target 
diagnostics

Self-emission
core-shape

5
.6

 m
m

Target

DMX

q=24°; j=99°

Radiation Drive

28H
q=33°; j=82°

29H
q=49°; j=63°

SBS & SRS

49o

33o

2.4 mm

DP2

q=0°; j=0°

Bubble Streak

A large suite of x-ray, 
neutron and backscatter 
diagnostics were fielded

q=164°; j=225° DD primary neutron (2.45 MeV)

q=90°; j=229.5°

+4 more equatorial 
neutron diagnostics
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Further analysis suggested that LPI control could benefit from 
~2x reduced intensity from inner quad-splitting

Optimal quad splitting is ±350 microns. 

Gas-only                                        (26 %)
Foam                                              (26%)          
Gas-only, quad split 370 𝝁𝒎 (7 %)
Foam, quad split 370 𝝁𝒎 (4 %)

40

20
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n
 (

%
) Inner quad SBS

Unsplit

Split
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LMJ experiments used inner quad-splitting (300 𝝁m) to 
balance LPI and LEH clipping risks
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Nominal Split by 200 𝝁𝒎 Split by 300 𝝁𝒎 Split by 400 𝝁𝒎

PreferredInitial LEH
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The measured SBS was comparable between the 2 targets while 
SRS on outer beams was reduced ~20x for the foam case

PF3D simulations are underway to understand these results

Q28H

Q29H

j=63.5°
q=20.1°

j=45°
q=37.8°

j=45°
q=66.2°

j=81°
q=66.2°

j=94°
q=53°

j=109°
q=29°

➢ Time resolved spectra is available 
only on inner quad Q28H

➢ NBI plates with ~64o angular range 
coverage is available for both cones

Q28H

Q28H laser delivery was comparable between the 2 shots with similar SBS

G
as

-o
n

ly

Fo
am

Q29H

While SRS is much reduced in the foam despite higher laser delivery Q29H

G
as

-o
n

ly

Fo
am

Outer SRS reduced by 20x

160J 180J

625 J

Inner SBS ~< 10% in line with predictions

Inner SRS ~< 1% in line with predictions

Preliminary



18

Our current models calculate plasma conditions that 
reproduce the measured data fairly well

600

500

400

Notch 530 nm

70 ps (14 GHz) SSD oscillation

Gas only

Notch 530 nm

Foam

outlier?

DP7 – Raman (SRS) time-resolved spectra (28H-inner)
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FLIP post-processor

Time (ns)

Preliminary
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outer edge of 33° Au bubble feature (not observed)
351.0

351.5

352.0

B
ac

ks
ca

tt
e

r 
lig

h
t 

w
av

e
le

n
gt

h
 (

n
m

)

DP7 – Brillouin (SBS) time-resolved spectra (28H-inner) FLIP post-processor
Time (ns)

Our current models calculate plasma conditions that 
reproduce the measured data fairly well

Gas only Foam

Preliminary
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BRILLOUIN Back-Scatter in the FABS (Q28H) time histories are 
similar for both shots, details being explored with pF3D

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 4,5 5 5,5 6 6,5 7 7,5 8

COMPAS2

3

3

9

17

7
31°

600 J total in f/6
170 J in NBI

Gas-only Foam

Preliminary
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DP2 streak camera successfully measured the bubble 
trajectory

Q18H+Q22H
Q10H+Q29HQ05H

Bubble 
trajectory

Ti
m

e

With a gated imager bubble position  is  
measured from a set of time frames

𝜽 = 𝟗𝟎𝒐

𝝓 = 𝟐𝟐𝟓𝒐

Time

Instead

Q05H

Q10H Q18H

Q29H Q22H

Time

Position along strip

DP2

3D simulation of LMJ experiment

Bubble self-emission images
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The DP2 instrument collected good data showing that the 
bubble was delayed in the foam target

Gas-only Foam

𝐓
𝐢𝐦

𝐞
(𝐧
𝐬)

Position along strip (𝝁𝒎)

Analysis is still ongoing;   A 
new calibration is needed to 
properly quantified the 
advantage provided by the 
foam
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The DP2 instrument collected good data showing that the 
bubble was delayed in the foam target - but less than simulated

Gas-only Foam
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𝐞
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Data

Simulation

Preliminary
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Laser quad delivery impacts bubble position; 3D post-processing 
analysis is ongoing 

Q
0

5
H

Q
1

0
H

Q
1

8
H

Q
2

2
H

Q
2

9
H

Picket Energy (KJ)

Peak Energy (KJ)

Gas-only
Foam

2D Playbooks` 𝐅𝐨𝐨𝐭 𝚫𝐜𝐟 ± 𝟐𝟎% 𝚫𝐏𝐩𝐞𝐚𝐤 ± 𝟏𝟎% 𝚫𝐏𝐟𝐨𝐨𝐭 ± 𝟏𝟎%

Gas-only < ±𝟓 𝝁𝒎 ±𝟐𝟎 𝝁𝒎 < ±𝟐 𝝁𝒎

Foam < ±𝟓 𝝁𝒎 ± 𝟑𝟎 𝝁𝒎 < ±𝟐 𝝁𝒎

Gas-only

Foam

4 ns 5 ns 6 ns 7 ns

DMX view

2D playbooks indicate that the impact is small (< 20%)

Preliminary
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Simulations not accounting for backscatter show a 16% 
deficiency in the peak  drive as measured by DMX

Gas-Only Foam

Measured foot temperature is 
much larger than predicted 

perhaps due to some stray light 
that comes in the FOV of the 
detector at early time from 

somewhere in the chamber?

Tr (eV) Tr (eV)

Time (ns)Time (ns)

--- Data
--- 3D simulation

Data for Tr drive is ~10 ev lower than calculated in the peak corresponding to a ~ 16% 
deficiency in flux.   Accounting for BS (~ 5-10%) the remaining 7-14 % missing energy 

would correspond to ~ 0.93x multiplier comparable with current hohlraums at the NIF

Preliminary
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The DMX instrument also includes a 2D x-ray imager, that
records 2 gated (4 ns long) images on a HCMOS camera 

FoamGas only

Periods where images are recorded
3D simulations capture the extent and morphology 
of the wall as measured through the DMX imager

Initial  LEH

Data

3
D

 S
im

u
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o

n

28H

29H

29B

28B
05B

05H

06H

DMX view

Preliminary
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While the morphology of the wall emission is captured well in 
3D simulations, some details merit further investigation

FoamGas only

Periods where images are recorded
3D simulations capture the extent and morphology 
of the wall as measured through the DMX imager

Sims show 
more intense 
spots
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DMX view

Preliminary
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The measured number of neutrons (2-5x108) is consistent with 
shock flash yield and minimal compression yields

Post-shot simulations of the LMJ 
shots show that the measured 
neutrons come mostly from the first 
shock with very little, if any, coming 
from the compression phase 

Neutron burn history

Time from bang time (ns)
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A plausible explanation is that the classically unstable SiO2/CH 
interface promoted shell break up even at low convergence (~14-15)

➢ Capsule-only simulations support this hypothesis

➢When combined with other degradations,  it is likely that only shock flash yield was observed

𝝆 ( Τ𝒈 𝒄𝒄)

𝑻𝒊 (𝒌𝒆𝑽)

➢ Capsule leakage was ruled out after GA verified that the capsules held the requested pressure 

Yield ~ 3e10

Unstable  (g<0, At<0)
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A robust capsule re-design prevents shell break up and allows 
core imaging

Mitigating capsule instability to enable self-emission imaging under the current (RT) 
fielding constraints, requires minimizing the amount of SiO2 mandrel

A capsule that has improved instability properties (but with higher convergence has 
been identified.  

tent

5 𝝁𝒎 SiO2

76 𝝁m CH

10 atm D2

gas + Ar

CH

5 𝝁𝒎 𝑺𝒊𝑶𝟐 can hold 
up to 10 atm of 𝑫𝟐

for several months

Modes 2-204

Yield: 2.3e11

𝑻𝒊 (𝒌𝒆𝑽)

𝝆 ( Τ𝒈 𝒄𝒄)
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A follow up LMJ campaign should resolve outstanding issues 
from the inaugural March shots
➢ We have investigated the possibility of using foams to improve on a high-compression CH 

design

➢ Experiments at the LMJ facility have shown that foams slow down the outer beam bubble

➢ LPI concerns addressed using PF3D predicted that split inner quads significantly reduce the 
calculated SBS

➢ Experiments show that this strategy was successful in producing SBS ~< 10%.
➢ Also showed that the presence of foams does not lead to higher SBS than in  gas only 

hohlraums 
➢ Evidence found for SRS of outer beams to be significantly reduced with foams

➢ Additional foam benefits include the ability to introduce mid-Z dopants (only possibility at 
cryo conditions) to manage LPI risk

➢ We propose a new capsule design to recover compressional yield and enable core-imaging

Summary
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Backups
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06H

05H

28H

29H

29B

28B

View from D8 (DMX)

Inners splitted

28H

29H

29B

28B
05B

05H

06H

Inners not splitted
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Previous work suggest low density foams may add additional 
benefits to control backscatter and symmetry

SR
S 

(%
)

Kr Partial Pressure (%)

➢Mid-Z dopants of hohlraum gas 
at cryo temperatures is not 
possible due to freezing

➢Foam structure is ideal to allow 
the addition of dopants in cryo
experiments

SRS    mitigation by mid-z dopants SBS   mitigation by foam structure

4
0

0
 m

m

r (mg/cc) Te (kev) Ti (kev)

* Stevenson, et al., PoP 11 (2004)

Foams provide natural SBS 
reduction due to ion heating (from 
collision of expanding filaments) 
that increase ion damping 

* Milovich, et al., PPCF 63 (2021)

Ti ~ 3Te

Symmetry

Omega experiments* using 
200 eV 2.5 ns drive showed no 
deleterious effects with up to 
2 mg/cc SiO2 foam fills

*

*

* Iaquinta, Amendt, Gregori (in preparation)

Early work

No Foam

Foam Sy
m

m
et

ry
 a
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s
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➢ Inner beams absorbed by ablated 
wall at time of maximum power

➢ Compromises symmetry control

Late-time symmetry control requires the use of CBET particularly for 
larger scale capsules

(k0, w0)

(k1, w1)

Dk

Poor inner beam propagation to 
the waist

➢ Presently cross-beam energy 
transfer (CBET) is exclusively 
used to control implosion 
symmetry

➢ As targets scale up, CBET may 
not be sufficient to control late 
time-dependent asymmetries 
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➢ Inner beams absorbed by ablated 
wall at time of maximum power

➢ Compromises symmetry control

Late-time symmetry control requires the use of CBET particularly for 
larger scale capsules

(k0, w0)

(k1, w1)

Dk

Poor inner beam propagation to 
the waist

➢ Presently cross-beam energy 
transfer (CBET) is exclusively 
used to control implosion 
symmetry

➢ As targets scale up, CBET may 
not be sufficient to control late 
time-dependent asymmetries 
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Improving the energy coupled to larger capsule increases the 
risk of bubble growth and potential loss of late-time symmetry 
SCALING

➢Bubble motion can be estimated as

for area of quad 𝐴𝑞~𝑠
Τ2 3 †, Euler-scaling 

leads to

𝚫𝒙𝒃𝒖𝒃𝒃𝒍𝒆
𝒔𝒄𝒂𝒍𝒆𝒅 ~ 𝒔 Τ𝟏𝟑 𝟗 ( > 𝒔𝟏 !)

➢ Thus, larger hohlraum scale gives relatively   
larger bubble growth and potentially earlier  
impediment of inner-beam propagation 

𝜟𝒙𝒃𝒖𝒃𝒃𝒍𝒆 ~ 𝒄𝒔𝒕 ~ 𝑻𝒆 𝟏 + 𝒁 𝒕 ~ (𝟏 + 𝒁) 𝑰𝝀𝟐 𝟐/𝟑 𝒕

~ (𝟏 + 𝒁) 𝑷𝑳𝝀
𝟐/𝑨𝒒

𝟐/𝟑 𝒕

† T. Chapman, accurate up to 50% larger scaling private comm. 

➢ Fixed hydro quantities (r, P) 
requires:

➢ 𝑡, 𝑥 → 𝑠 ∗ (𝑡, 𝑥)

➢𝑃𝐿 → 𝑃𝐿 ∗ 𝑠2

➢𝐸𝐿 → 𝐸𝐿 ∗ 𝑠
3

➢ 𝐸𝑐𝑎𝑝 → 𝐸𝑐𝑎𝑝 ∗ 𝑠3

Euler scaling

𝚫𝒙𝒃𝒖𝒃𝒃𝒍𝒆
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The foam-fill hohlraum concept attempts to provide additional 
margin for high convergence and low CCR targets

Motivated by:
Challenges in symmetry at low case-to-capsule (CCR) for more 
efficient hohlraums

Uncertainties in CBET to provide needed symmetry control at more 
demanding CCRs

Foams may provide sufficient tamping of outer bubble 
expansion eliminating the need for CBET

or
Foams may add additional control even when using CBET

Potential for higher LPI at larger scales (longer laser pathlengths)
Foams allow for LPI mitigation by high-Z dopants at cryo temps
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𝚫 Τ𝑷𝟐 𝑷𝟎

~ + 𝟏𝟎%

Simulations, using the requested pulses and as fielded targets, suggested 
modest but measurable changes in capsule symmetry and bubble motion.

Gas-only

Foam

200 𝝁𝒎

Foam

Gas-only

𝑹
𝒃
𝒖
𝒃
𝒃
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𝒈
𝒂
𝒔

−
𝑹
𝒃
𝒖
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𝒃
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𝒇
𝒐
𝒂
𝒎

(𝝁
𝒎
)

𝐓𝐢𝐦𝐞 (𝐧𝐬)

𝑹𝒃𝒖𝒃𝒃𝒍𝒆
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Capsule implosion symmetry can be assessed by performing 
simulations, since no data was obtained.

3D simulations were used to ascertain 
capsule symmetry since the hohlraum 
wall is not fully  azimuthally irradiated 
in the current LMJ configuration

➢ Pre-shot 3D simulations predict 
larger changes in P2 in the presence 
of foams

➢ However, accounting for laser 
delivery present some challenges in 
interpreting the data

Images obtained 
from 3D simulations
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While laser delivery was good, the peak cone fraction was 
systematically different across the peak

➢ Laser delivery was reasonably good with some quad-to-quad variations that 
needs to be accounted for in the data analysis 
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higher cf +0.01 
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Additionally, the cone fraction during the picket delivered too high 
leading to a late-time symmetry inversion

--- Requested
--- Gas-only Hohlraum  (to match rise time of 4th pulse was advanced by 75 ps)

Radiation Flux  Τ𝑷𝟐 𝑷𝟎 (%) 
@ ablation front

Leads to significant peak 
symmetry changes

Cone-fraction

Gas-only case
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Additionally, the cone fraction during the picket delivered too high 
leading to a late-time symmetry inversion

--- Requested
--- Gas-only Hohlraum  (to match rise time of 4th pulse was advanced by 75 ps)

Radiation Flux  Τ𝑷𝟐 𝑷𝟎 (%) 
@ ablation front

Peak symmetry changes 
mitigated by the foam

Cone-fraction
Foam case
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As a result, postshot simulations show a departure from the expected 
symmetry change

Gas-only Foam case

𝚫 Τ𝑷𝟐 𝑷𝟎

−𝟐𝟒%
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Simulations using the fielded targets, but swapped laser pulses, 
confirm that laser delivery is the culprit for the symmetry calculated

Gas-only Foam case

𝚫 Τ𝑷𝟐 𝑷𝟎

+ 𝟑𝟓%
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Capsule implosion symmetry can be assessed by performing 
simulations, since no data was obtained.

3D simulations were used to ascertain 
capsule symmetry since the hohlraum 
wall is not fully  azimuthally irradiated 
in the current LMJ configuration

➢ We found that for a perfect laser 
simulations predict that capsule 
symmetry is for the most part 
ndependent of viewing angle 

➢ However, accounting for laser 
delivery present some challenges in 
interpreting the data

Images obtained from a 
3D simulation using 2 
different lines of sight
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Laser delivery had a significant top/bottom imbalance, creating a 
significant mode 1 on the implosion symmetry



LMJ 
neutron 

diagnostics

Three pairs of neutron NTOF 
detectors were fielded

5
.6

 
m

m

Target

2.4 mm

q=16°; j=45°

q=164°; j=225°

DD primary neutron (2.45 MeV)

q=90°; j=49.5°

DT secondary

neutrons (14.1 MeV)

q=90°; j=229.5°

The LMJ NTOF measures:
1. Neutron Bang Time
2. Primary (DD) neutron production
3. Secondary (DT) neutron production
4. Ion temperature

108 DD neutron threshold
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LMJ experiments used reduced inner quad-splitting (300 𝝁m) 
to balance LPI and LEH clipping risks

Imprint on Hohlraum wall Inner 33 imprint on LEH Outer 49 imprint on LEH

LEH
LEH + 300 um
LEH + 700 um

Inners splitted by 300 𝝁𝒎
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DP7 – time-resolved spectra for RAMAN backscattering (28H-inner)

Taux de rétrodiffusion 
Raman estimé <1 % 

Notch 530 nm

70 ps (14 GHz)

Taux de rétrodiffusion 
Raman estimé <1% 

Notch 530 nm

70 ps (14 GHz)

Gas only Foam+Gas

28H

29H

28H

29H

Gas only Foam+Gas

The signal on Q29H has 
decreased by a factor ~ 20

25J

12J

625J

DP8 – NBI RAMAN around 28H-inner and 29H-outer

RAMAN scattering losses are 
dominated

by the outers’ losses
(significant only

in the gas only shot)
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Time resolved Brillouin is measured on 40 points with DP8

28H

34

9

18

SBS on NBI around Q28h is of shorter
duration (~ 1 ns) than SBS in the FABS 

In case of question
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pF3D analysis of HYDRA simulations showed high inner quad 
SBS reflectivity for both gas-only and foam targets 

gas only (6.5 ns)

gas+foam (6.5 ns)

Au bubble

Au bubble
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The DP2 instrument collected good data showing that the 
bubble was delayed in the foam target - but less than simulated

Gas-only Foam
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The DMX instrument also includes a 2D x-ray imager, that
records 2 gated (4 ns long) images on a HCMOS camera 

06H

05H

28H

29H

29B

28B

View from D8 (DMX)
FoamGas only

Periods where images are recorded
3D simulations capture the extent and morphology 
of the wall as measured through the DMX imager
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While the morphology of the wall emission is captured well in 
3D simulations, some details merit further investigation
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View from D8 (DMX)
FoamGas only

Periods where images are recorded
3D simulations capture the extent and morphology 
of the wall as measured through the DMX imager

Sims show 
more intense 
spots
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