

Assessment of neutron production using the high-energy PETAL laser

Ronan Lelièvre

J. Fuchs, G. Boutoux , E. d'Humières, L. Gremillet, M. Bardon, X. Vaisseau, W. Cayzac, O. Landoas, T. Caillaud, D. Raffestin

Laboratoire pour l'Utilisation des Lasers Intenses (LULI - CNRS) Laboratoire de micro-irradiation, de métrologie et de dosimétrie des neutrons (LMDN - IRSN)

Outline

Laser-driven neutron sources

Pitcher-catcher technique Characteristics and applications

Design of the experiment

Preliminary calculations Diagnostics Setup

First results of neutron production

Shot details Activation diagnostic Neutron Time-of-flight

Conclusions & prospects

Outline

Laser-driven neutron sources

Pitcher-catcher technique Characteristics and applications

Design of the experiment

Preliminary calculations Diagnostics Setup

First results of neutron production

Shot details Activation diagnostic Neutron Time-of-flight

Conclusions & prospects

Pitcher-catcher technique

Neutron production from a laser-induced proton beam

Pitcher-catcher technique

Neutron production from a laser-induced proton beam

Characteristics

New neutron sources:

- + compact sources
- radiological constraints

Characteristics

New neutron sources:

+ compact sources

- radiological constraints

Unique characteristics: Short and intense emissions Fast neutrons

Characteristics

New neutron sources:

+ compact sources

- radiological constraints

Unique characteristics: Short and intense emissions Fast neutrons

Facility	Peak neutron flux $[n/(\text{cm}^2 \text{ s})]$	Average neutron flux $[n/(\text{cm}^2 \text{ s})]$	Neutron bunch duration	Repetition rate (Hz)	
ILL (reactor-based) SNS (accelerator-based)	$\sim 10^{15}$ $\sim 10^{16}$	$\sim 10^{15}$ $\sim 10^{12}$	(Continuous)	(Continuous)	
Present-day lasers	$10^{18} - 10^{19}$	$5 \times 10^{5} - 5 \times 10^{6}$	$\sim 1 \text{ ns}$	5×10^{-4} (1 shot/30 min)	
Upcoming multi-PW lasers	$10^{22} - 5 \times 10^{24}$	$10^{11} - 5 \times 10^{13}$	~1 ns	$1.6 \times 10^{-2} (1 \text{ shot/min})$	

Applications

...

Neutron radiography Radiotherapy (BNCT) Astrophysics: r-process

s-process and β -decay ${}^{A}_{Z}X + {}^{1}_{0}n \rightarrow {}^{A+1}_{Z}X \rightarrow {}^{A+1}_{Z+1}Y + e^{-} + \bar{\nu}_{e}$

s-process works only up to ²⁰⁹Bi, because ²¹⁰Po undergoes adecay

 $^{210}PO \rightarrow ^{206}Pb + ^{4}O$

Outline

Laser-driven neutron sources *Pitcher-catcher technique Characteristics and applications*

Design of the experiment

Preliminary calculations Diagnostics Setup

First results of neutron production

Shot details Activation diagnostic Neutron Time-of-flight

Conclusions & prospects

Preliminary calculations

Proton spectrum: - Shot #176 (450J, 50 μm CH + 1μm Al)

- Cutoff energy \approx 51 MeV
- 1.4x10¹³ protons/shot

"Enhanced ion acceleration using the high-energy petawatt PETAL laser" D. Raffestin et al. (2021)

Converter dimension optimization

<u>Converters:</u> LiF (e=2 \rightarrow 7mm), Pb (e=1,5 \rightarrow 3mm) and LiF+Pb

 $\begin{array}{rcl} \underline{Virtual\ detectors:} & 0^\circ & \rightarrow & 180^\circ \ /\ 10 cm^2 \ /\ 10 cm\ from\ converter} \\ & 4\pi\ sr\ sphere \end{array}$

Physics list "QGSP_BIC_AllHP": TENDL for proton-induced reactions and ENDF for neutron-induced reactions

Converter dimension optimization

<u>Converters:</u> LiF (e=2 \rightarrow 7mm), Pb (e=1,5 \rightarrow 3mm) and LiF+Pb

 $\begin{array}{rcl} \underline{Virtual\ detectors:} & 0^\circ & \rightarrow & 180^\circ \ /\ 10 cm^2 \ /\ 10 cm\ from\ converter} \\ & 4\pi\ sr\ sphere \end{array}$

Physics list "QGSP_BIC_AllHP": TENDL for proton-induced reactions and ENDF for neutron-induced reactions

Converter dimension optimization

<u>Converters:</u> LiF (e=2 \rightarrow 7mm), Pb (e=1,5 \rightarrow 3mm) and LiF+Pb

 $\begin{array}{rcl} \underline{Virtual\ detectors:} & 0^\circ & \rightarrow & 180^\circ \ /\ 10 cm^2 \ /\ 10 cm\ from\ converter} \\ & 4\pi\ sr\ sphere \end{array}$

Physics list "QGSP_BIC_AllHP": TENDL for proton-induced reactions and ENDF for neutron-induced reactions

Simulation of neutron emissions

Best results for: LiF (e=4mm), Pb (e=2mm) and LiF (e=1mm) + Pb (e=1,5mm)

- >LiF : 9.866×10^9 neutrons ($\bar{E} = 3.50$ MeV)
- >Pb: 1.509×10^{10} neutrons ($\bar{E} = 2 \text{ MeV}$)

➢LiF+Pb : 1.395x10¹⁰ neutrons (Ē = 2.57 MeV)

Diagnostics

Two types of neutron detectors:

- Activation diagnostic

Diagnostics

Two types of neutron detectors:

- Activation diagnostic
- Time-of-flight detectors (BC422Q)

Scintillator

In

Fe

Zr

17

Activation of samples using different reactions to retrieve neutron energy

Several criteria for samples selection:

- Reactions with interesting cross-sections and spanning a wide spectrum
- Radionuclides with high intensity gamma emissions
- ...

Layer #1	Layer #2	Layer #3	Layer #4	Layer #5
(n,g) reactions	(n,n') or (n,p) reactions	(n,a) reactions	(n,2n) reactions	(n,3n) or (n,4n) reactions
Au, Cd, Cu, Mn, Ni, Sn, W, Zn, …	Al, In, Ni, Rh, S, Zn	Al, Fe, Mg	Co, Cu, Nb, Ni, Sc, Y, Zr	Bi

Geant4 activation simulations to find best samples:

- Indium

Geant4 activation simulations to find best samples:

- Indium

- Iron

Fe-56(n,p)Mn-56

Geant4 activation simulations to find best samples:

- Indium
- Iron
- Zirconium

Zr-90(n,2n)Zr-89

4 scintillators on the equatorial plan

4 scintillators on the equatorial plan

+ 2 scintillators on the near-polar axis

Outline

Laser-driven neutron sources

Pitcher-catcher technique Characteristics and applications

Design of the experiment

Preliminary calculations Diagnostics Setup

First results of neutron production

Shot details Activation diagnostic Neutron Time-of-flight

Conclusions & prospects

Shot details

	Shot #1 Pb converter	Shot #2 LiF converter	Shot #3 LiF + Pb converter	Shot #4 LiF + Pb converter
On-target energy (J)	347	358	345	340
Pulse duration (fs)	1000	1000	800	630
Intensity (W/cm ²)	3.1x10 ¹⁸	4.1x10 ¹⁸	2.95x10 ¹⁸	7.2x10 ¹⁸
Proton cutoff energy (MeV)	30	25	28	35
Converter	Pb	LiF	LiF + Pb	LiF + Pb

Shot details

	Shot #1 Pb converter	Shot #2 LiF converter	Shot #3 LiF + Pb converter	Shot #4 LiF + Pb converter
On-target energy (J)	347	358	345	340
Pulse duration (fs)	1000	1000	800	630
Intensity (W/cm ²)	3.1x10 ¹⁸	4.1x10 ¹⁸	2.95x10 ¹⁸	7.2x10 ¹⁸
Proton cutoff energy (MeV)	30	25	28	35
Converter	Pb	LiF	LiF + Pb	LiF + Pb

Neutron Time-of-flight

Shot #1 - Pb converter

Lesi.

Scintillator 448 (placed behind the converter, 45deg from the normal axis)

Shot #3 – hybrid converter LiF + Pb

Gamma spectrometry of the activation samples:

- Measurement time \rightarrow 22h

Gamma spectrometry of the activation samples:

- Measurement time \rightarrow 22h
- Detection efficiency calculated with ISOCS software

Material	Reaction	Half-life	E _X (keV)	Shot #1 - A _{mes.} (Bq)	Shot #3 - A _{mes.} (Bq)
1	¹¹⁵ In(n,g) ^{116m} In	54.29 min	1293.6	<mark>21.86 ± 1.49</mark>	<mark>190.5 ± 3.43</mark>
In	¹¹⁵ ln(n,n') ^{115m} ln	4.49 h	336.2	<mark>5.23 ± 0.22</mark>	<mark>48.05 ± 0.43</mark>
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	2.58 h	846.8	0	3.12 ± 0.39
Zr	⁹⁰ Zr(n,2n) ⁸⁹ Zr	78.41 h	909.2	0.60 ± 0.08	1.46 ± 0.12

Gamma spectrum of activation samples - Shot #3

Material	Reaction	Half-life	E _x (keV)	Shot #1 - A _{mes.} (Bq)	Shot #3 - A _{mes.} (Bq)
1	¹¹⁵ In(n,g) ^{116m} In	54.29 min	1293.6	<mark>21.86 ± 1.49</mark>	<mark>190.5 ± 3.43</mark>
In	¹¹⁵ ln(n,n') ^{115m} ln	4.49 h	336.2	5.23 ± 0.22	<mark>48.05 ± 0.43</mark>
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	2.58 h	846.8	0	3.12 ± 0.39
Zr	⁹⁰ Zr(n,2n) ⁸⁹ Zr	78.41 h	909.2	0.60 ± 0.08	1.46 ± 0.12

Measurements:

4.7x10⁷ neutrons/sr [1-10 MeV]

4.3x10⁸ neutrons/sr [1-10 MeV]

Material	Reaction	Half-life	E _X (keV)	Shot #1 - A _{mes.} (Bq)	Shot #3 - A _{mes.} (Bq)
1	¹¹⁵ In(n,g) ^{116m} In	54.29 min	1293.6	21.86 ± 1.49	190.5 ± 3.43
In	¹¹⁵ ln(n,n') ^{115m} ln	4.49 h	336.2	<mark>5.23 ± 0.22</mark>	48.05 ± 0.43
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	2.58 h	846.8	0	3.12 ± 0.39
Zr	⁹⁰ Zr(n,2n) ⁸⁹ Zr	78.41 h	909.2	0.60 ± 0.08	1.46 ± 0.12
	1	1	·		

Measurements:

4.7x10⁷ neutrons/sr [1-10 MeV]

4.3x10⁸ neutrons/sr [1-10 MeV]

Simulations:

1.3x10⁹ neutrons/sr [1-10 MeV]

1.4x10⁹ neutrons/sr [1-10 MeV]

Shot details

	Shot #1 Pb converter	Shot #2 LiF converter	Shot #3 LiF + Pb converter	Shot #4 LiF + Pb converter
On-target energy (J)	347	358	345	340
Pulse duration (fs)	1000	1000	800	630
Intensity (W/cm ²)	3.1x10 ¹⁸	4.1x10 ¹⁸	2.95x10 ¹⁸	7.2x10 ¹⁸
Proton cutoff energy (MeV)	30	25	28	35
Converter	Pb	LiF	LiF + Pb	LiF + Pb

Material	Reaction	Half-life	E _X (keV)	Shot #2 - A _{mes.} (Bq)	Shot #3 - A _{mes.} (Bq)	
1	¹¹⁵ In(n,g) ^{116m} In	54.29 min	1293.6	211.5 ± 5.29	190.5 ± 3.43	
In	¹¹⁵ ln(n,n') ^{115m} ln	4.49 h	336.2	38.71 ± 0.39	48.05 ± 0.43	
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	2.58 h	846.8	1.30 ± 0.35	3.12 ± 0.39	
Zr	⁹⁰ Zr(n,2n) ⁸⁹ Zr	78.41 h	909.2	0	1.46 ± 0.12	

Measurements:

3.5x10⁸ neutrons/sr [1-10 MeV]

4.3x10⁸ neutrons/sr [1-10 MeV]

Neutron Time-of-flight

Legi

Scintillator 448 (placed behind the converter, 45deg from the normal axis)

Shot #3 – hybrid converter LiF + Pb

Shot details

	Shot #1 Pb converter	Shot #2 LiF converter	Shot #3 LiF + Pb converter	Shot #4 LiF + Pb converter
On-target energy (J)	347	358	345	340
Pulse duration (fs)	1000	1000	800	630
Intensity (W/cm ²)	3.1x10 ¹⁸	4.1x10 ¹⁸	2.95x10 ¹⁸	7.2x10 ¹⁸
Proton cutoff energy (MeV)	30	25	28	35
Converter	Pb	LiF	LiF + Pb	LiF + Pb

Material	Reaction	Half-life	E _X (keV)	Shot #4 - A _{mes.} (Bq)	Shot #3 - A _{mes.} (Bq)
1	¹¹⁵ In(n,g) ^{116m} In	54.29 min	1293.6	267.7 ± 5.09	190.5 ± 3.43
In	¹¹⁵ ln(n,n') ^{115m} ln	4.49 h	336.2	75.60 ± 0.53	48.05 ± 0.43
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	2.58 h	846.8	6.54 ± 0.48	3.12 ± 0.39
Zr	⁹⁰ Zr(n,2n) ⁸⁹ Zr	78.41 h	909.2	6.01 ± 0.19	1.46 ± 0.12
	1	1	·		

Measurements:

6.8x10⁸ neutrons/sr [1-10 MeV]

4.3x10⁸ neutrons/sr [1-10 MeV]

Outline

Laser-driven neutron sources

Pitcher-catcher technique Characteristics and applications

Design of the experiment

Preliminary calculations Diagnostics Setup

First results of neutron production

Shot details Activation diagnostic Neutron Time-of-flight

Conclusions & prospects

PETAL 2023 experiment

- \rightarrow First measurements of neutrons produced by the pitcher-catcher technique
- \rightarrow Possibility to adjust the neutron production using different converters
- \rightarrow Demonstration of the interest of hybrid converters

Prospects

- \rightarrow Development of an activation spectrometer
- \rightarrow Mettre en œuvre les applications (neutron capture or radiography)

PETAL 2023 experiment

- → First measurements of neutrons produced by the pitcher-catcher technique
- \rightarrow Possibility to adjust the neutron production using different converters
- \rightarrow Demonstration of the interest of hybrid converters

Prospects

- \rightarrow Development of an activation spectrometer
- → Implementation of concrete applications (neutron capture or radiography)

European

Geant4 simulation

LiF converter (4 mm)

- \rightarrow Total : 9.869x10⁹ neutrons (\bar{E} = 3.50 MeV)
- $> 0^{\circ}$: 1.280x10⁷ neutrons/cm² (Ē = 4.41 MeV)
- ➢ 45° : 1.035x10⁷ neutrons/cm²
- ➢ 90° : 6.457x10⁶ neutrons/cm²
- ▶ 135° : 5.571x10⁶ neutrons/cm²
- ▶ 180° : 5.194x10⁶ neutrons/cm²

Geant4 simulation

Pb converter (2 mm)

- \rightarrow Total : 1.509x10¹⁰ neutrons ($\bar{E} = 2$ MeV)
- \geq 0° : 1.312x10⁷ neutrons/cm² (Ē = 2.35 MeV)
- ➢ 45° : 1.229x10⁷ neutrons/cm²
- ➢ 90° : 1.086x10⁷ neutrons/cm²
- ▶ 135° : 1.154x10⁷ neutrons/cm²
- ▶ 180° : 1,160x10⁷ neutrons/cm²

Geant4 simulation

LiF (1 mm) + Pb (1.5 mm)

- \rightarrow Total : 1.395x10¹⁰ neutrons ($\bar{E} = 2.57$ MeV)
- \geq 0° : 1.587x10⁷ neutrons/cm² (Ē = 3.29 MeV)
- ➢ 45° : 1,035x10⁷ neutrons/cm²
- ➢ 90° : 6,457x10⁶ neutrons/cm²
- > 135° : 5,571x10⁶ neutrons/cm²
- > 180° : 5,194x10⁶ neutrons/cm²

Thickness optimization

Geant4 simulations of gamma-ray emissions from samples of varying thicknesses

 \rightarrow Number of nuclei created vs self-absorption effect

Thickness optimization: indium sample

Normalized number of hits depending on the thickness

Optimum thickness ≈ 20 mm

 $10 \text{ mm} \rightarrow A_0(^{115m} \text{In}) = 50,99 \text{ Bq} \& A_0(^{116m} \text{In}) = 364,69 \text{ Bq}$

Time-of-flight detectors

- 40 mm diameter PVT-based scintillators (BC422Q)
- At 3.8 m from TCC
- Gated PMT: 4x GPMT140 (low gain)

2x GPMT240 (high gain)

Simulations

Con	vertisseurs	LiF 4ı	mm	Pb 2r	nm	LiF 1mm + Pb 1,5mm	
R	éactions	(n,X)	(g,X)	(n,X)	(g,X)	(n,X)	(g,X)
Échantillon	^{115m} In	27,48 Bq	0,018 Bq	21,10 Bq	0,166 Bq	29,18 Bq	0,139 Bq
In In	^{116m} In	17,03 Bq	0,253 Bq	24,25 Bq	3,04 Bq	26,08 Bq	2,52 Bq
D=3 pouces e=10 mm	^{113m} ln	0,374 Bq	0,447 Bq	0,118 Bq	5,40 Bq	0,258 Bq	4,58 Bq
Échantillon	⁵⁶ Mn	5,05 Bq	0,016 Bq	1,60 Bq	0,143 Bq	3,78 Bq	0,116 Bq
n°2 Fe	⁵⁴ Mn	0,005 Bq	0,0003 Bq	0,002 Bq	0,004 Bq	0,004 Bq	0,004 Bq
D=3 pouces e=10 mm	⁵⁵ Fe	0,002 Bq	0,006 Bq	0,001 Bq	0,076 Bq	0,001 Bq	0,063 Bq
<u> </u>	⁸⁹ Zr	0,232 Bq	0,773 Bq	0,072 Bq	9,40 Bq	0,175 Bq	7,85 Bq
Echantillon n°3 Zr	⁹⁷ Zr	0,024 Bq	0,0005 Bq	0,032 Bq	0,005 Bq	0,035 Bq	0,004 Bq
D=3 pouces e=15 mm	⁹¹ Sr	0,008 Bq	0 Вq	0,002 Bq	0,0004 Bq	0,005 Bq	0 Вq