<u>Cea</u>

LMJ laser performance

LMJ-PETAL User meeting

CESTA-DLP / V DENIS

LMJ-PETAL Users Guide

This document describes the status of the LMJPETAL facility and provides the necessary technical references to researchers intending to perform experiments on LMJ-PETAL.

To limit damage growth and thus the maintenance of the optics during the end of the LMJ assembly, the energy is currently limited to 3.75 kJ and the power to 1,25 TW per beam.

LMJ

https://www-Imj.cea.fr/docs/2020/LMJ-PETAL-Users-guide-v2.0.pdf

Laser MegaJoule main characteristics

4

LASER BAYS

- 22 bundles of 8 beams
- 2 quads per bundle.
- 176 beams
- 1 specific beam line for PETAL (PW laser).

1

TARGET BAY

- 1 Target Chamber Ø10m
- 200 ports
- 2 x 2 irradiation cones
- 10 quads per cone
- 4 quads for diagnostics

LMJ Beamline Architecture

LMJ bundles status

13 LMJ bundles are operational (B28, B29, B17, B18, B10, B11, B05, B06, B22, B24, B23, B02, B13) + PETAL,

2 LMJ bundles are being commissioned (B21, B26) \rightarrow end 2023,

1 LMJ bundle is already assembled: B09,

2 LMJ bundles are being assembled: PAM, PEPC, transport mirrors, SCF (B19 et B07).

LMJ specifications

About 60 specifications, described in 5 items :

6

Focal Spot: Phase plates & location

Focal Spot is determined by the phase plate and 2 locations coexist

- 1ω location : mounted upstream the Frequency conversion and focusing System. No changes allowed during campaign period.
- 3ω location : mounted downstream the Frequency conversion and focusing System. Different phase plates are embedded in the final optics assembly and changes may occur between campaigns.

Focal Spot: Requirements and measures

Dimensions of focal spot are given for 3% of the maximum intensity

Requirement for each phase plate in the installation

- A type : elliptical with dimensions of 750 x 1500 μm²
- B type : elliptical with dimensions of 1200 x 1700 μ m²
- D type : circular with a diameter of 860 μm
- E type : circular with a diameter of 1500 μm
- F type : circular with a diameter of 630 μm

Requirement for defocus

• Up to 20 mm with superposition of the 4 beams

- No measures on power shots
- Low Energy measure on alignment sensor
- High Energy simulation with MIRO Code

Focal Spot: prospective equipment

Progressive equipment with B type phase plates for heating internal quads

Year				Inter	nal up	per q	uads							Inter	nal lo	wer q	uads			
Quad	2H	6H	9H	11H	13H	17H	21H	24H	26H	28H	3B	5B	7B	10B	14B	18B	20B	22B	25B	29B
2023		А		А		А		А		ABEF		А		А		А		А		AEF
2024		А		А		А		А		ABEF		А		А		А		А		AEF
2025	В	А	В	А	В	А	В	А	В	ABEF		А		А		А		А		AEF
2026	В	А	В	А	В	А	В	А	В	ABEF		В		В		В		В		В
2027	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

- External heating quads equipped with A type phase plate
- 2 radio quads (19 & 23) equipped with E and F types phase plates

Energy-Power Diagram (EP Diagram)

Limitation of the EP diagram to preserve the final optics up to the end of the mounting

Requirements on target

- Energy limit : 13.5kJ per quad
- Power limit : 4.5 TW per quad

- Immediately observable after the shot
- Consolidated laser energy and power are communicated at the end of the experimental campaign after evaluation of the vacuum window transmission

EP Diagram: characteristics and accuracy

Measure performance

Measures are acquired for each beam

- Accuracy with measured energy : 5% rms
- Accuracy with measured power : 10% rms Measures for a campaign
- Accuracy with required energy : 6% rms
- Accuracy with balanced energy : 15% rms

Vacuum window protection: limitation for EP Diagram

- Damage sites on vacuum window are detected with a dedicated device
- Beam blockers are defined at the PAMs
- Damage sites growth is blocked

Final Optics Transmission

cea

Final Optics Transmission is regularly assessed for consolidated datas

7/12/2023 11

Temporal shapes

Limitation of one Pre-Amplifying Module per 2 beams

Limitation of one Temporal Shape Module per quad

Requirements

- Temporal duration range : 700 ps do 20 ns
- Shortest riding edge : 350 ps
- Complex pulse can be created (rising pulse, decreasing pulse, multiple pulses, with pedestal, ...)
- Modulation < 20 % peak to peak

- Immediately observable after the shot
- One 3ω measure for each beam
- In the absence of any 3ω measures, a simulation of the 1ω measure is propagated with the MIRO code

Temporal shapes: reconstruction

Quad Temporal shape on target is reconstructed from beam measures

- Final Optics Transmission of each beam reduces the energy contained in the temporal shape
- Quad temporal shape is reconstructed from these beam measures. Each beam synchronization value is taken into account in this reconstruction
- Beam Temporal shapes are smoothed with a 500 ps sliding window

Smoothed quad temporal shape

7/12/2023

Temporal shapes: analysis

Quad Temporal shape on target is compared to the required one

- A template is designed around the required temporal shape
- The measured signal is compared to the template
- An evaluation of the number of the points outside the template gives information about the quality of the Temporal Shape

Synchronization on target

Synchronization is defined for the best focus of the quad

Synchronization is defined at half power of the first rising edge

Synchronization is defined relatively to the delay required for each quad

Requirements

- Actual requirement < 80 ps RMS
- Delay between 2 quads < 70 ns \bullet

- Immediately observable after the shot
- One 3ω measure for each beam
- In the absence of any 3ω measures, the 1ω measure is used instead

Synchronization on target: setting

Synchronization is tuned just before the power shot

- A 1 ω synchronization measure is realized for each validation shots
- A setting of the quad synchronization is achievable after each validation shot
- A setting requires a new validation shot

				Détails des	retours PARC	-			
HLNO QH/MPA1 Orig [PARC] IL				NRJ (mJ)	△ Tref (ps)			ш	NF
		QH / MPA2 Orig (PARC) IL	QB/MPA1 Orig [PARC] IL	QB / MPA2 Orig [PARC] IL	QH/MPA1 Orig[PARC] IL	QH / MPA2 Orig (PARC) IL	QB/MPA1 Orig [Parc] IL	QB / MPA2 Orig [PARC] IL	
1									30
2					44 23	21 61	44 22	44 21	25
3					44 22	44 23	61 23	45 22	28
4									27
5									26
6									25
7									24
8 HLSO				QH/MPA1 Orig [PARC] IL	QH/MPA2 Orig [PARC] IL	QB/MPA1 Orig (PARC) IL	HLSE QB / MPA2 Orig [PARC] IL		
	QH/MPA1 Orig[PARC] IL	QH/MPA2 Orig [PARC] IL	QB/MPA1 Orig [PARC] IL	QB / MPA2 Orig [PARC] IL		1 1 1	10 1 1	1	23
9		1	1 1 1						22
0	44 22	55 21	44 10	45 22 21					21
1	61 23	43 20	61 23	46 22 10			1 1 1		20
2									19
3					21 44	23 45	21 44	21 44	18
4					61 23	45 22	45 22	61 23	17
15									16

7/12/2023

16

Pointing performance

The requirements depend on the coordinates in the pointing volume

Upper quads Requirement in the cylinder of 30 mm height and 30 mm diameter : < 75 μm rms 30 mm 30 mm Requirement in the cut cylinder of 30 mm height and 30 mm **100 mm diameter :** < 115 µm rms **Requirement in the cylinder of 100 mm height and 30** 100 mm mm diameter For quads in the same hemisphere $< 115 \,\mu m$ rms For quads in the other hemisphere $< 150 \ \mu m \ rms$ Data access 70 mm No measures on power shots 100 mm Low Energy measure on alignment sensor Lower guads Dedicated shots on specific targets for estimation 7/12/2023 11

Shot and campaign process

One shot on target per day

· Autonomous call (manual mode)

laser data

<u>cea</u>

7/12/2023

18

Laser data format

Thanks for your attention

V. DENIS CESTA/DLP/STLP/LSL 05.57.04.43.47 Vincent.denis@cea.fr